
© Copyright 2011 Denim Group - All Rights Reserved

Smart Phones Dumb Apps

Dan Cornell

© Copyright 2011 Denim Group - All Rights Reserved

My Background

• Dan Cornell, founder and CTO of Denim Group

• Software developer by background (Java, .NET, etc)

• OWASP San Antonio, Global Membership Committee

• Denim Group

– Build software with special security, performance, reliability

requirements

– Help organizations deal with the risk associated with their software

• Code reviews and application assessments

• SDLC consulting

• Secure development training – instructor-led and eLearning

1

http://www.threadstrong.com/

© Copyright 2011 Denim Group - All Rights Reserved

Agenda

• Generic Smartphone Threat Model

• Sample Application

• What an Attacker Sees (Android Edition)

• What About iPhones/iPads?

• Special Topic: Browser URL handling

• Closing Thoughts

• Questions

2

© Copyright 2011 Denim Group - All Rights Reserved

Tradeoffs: Value versus Risk

• Mobile applications can create tremendous value for organizations

– New classes of applications utilizing mobile capabilities: GPS, camera, etc

– Innovating applications for employees and customers

• Mobile devices and mobile applications can create tremendous risks

– Sensitive data inevitably stored on the device (email, contacts)

– Connect to a lot of untrusted networks (carrier, WiFi)

• Most developers are not trained to develop secure applications

– Fact of life, but slowing getting better

• Most developers are new to creating mobile applications

– Different platforms have different security characteristics and capabilities

3

© Copyright 2011 Denim Group - All Rights Reserved

Smart Phones, Dumb Apps

• Lots of media focus on device and platform security

– Important because successful attacks give tremendous attacker leverage

• Most organizations:

– Accept realities of device and platform security

– Concerned about the security of their custom applications

– Concerned about sensitive data on the device because of their apps

– Concerned about network-available resources that support their apps

• Who has smartphone application deployed for customers?

• Who has had smartphone applications deployed without their

knowledge?

– *$!%$# marketing department…

4

© Copyright 2011 Denim Group - All Rights Reserved

Generic Mobile Application Threat Model

5

© Copyright 2011 Denim Group - All Rights Reserved

Some Assumptions for Developers

• Smartphone applications are essentially thick-client applications

– That people carry in their pockets

– And drop in toilets

– And put on eBay when the new iPhone comes out

– And leave on airplanes

– And so on…

• Attackers will be able to access:

– Target user (victim) devices

– Your application binaries

• What else should you assume they know or will find out?

6

© Copyright 2011 Denim Group - All Rights Reserved

A Sample Application

• Attach to your brokerage account

• Pull stock quotes

• Make stock purchases

• Application on mobile device supported by enterprise and 3rd party

web services

• (Apologies to anyone with any sense of UI design)

• This is intentionally nasty, but is it unrealistic?

7

© Copyright 2011 Denim Group - All Rights Reserved

So What Does a Bad Guy See? (Android Edition)

• Install the application onto a device

• Root the device

• Pull the application’s APK file onto a workstation for analysis

• APK files are ZIP files

• They contain:

– AndroidManifest.xml

– Other binary XML files in res/

– classes.dex DEX binary code

8

© Copyright 2011 Denim Group - All Rights Reserved

Generic Android Application Threat Model

9

© Copyright 2011 Denim Group - All Rights Reserved

What’s Up With My XML Files?

• Binary encoding

• Use axml2xml.pl to

convert them to text

http://code.google.com/p/android-random/downloads/detail?name=axml2xml.pl

10

http://code.google.com/p/android-random/downloads/detail?name=axml2xml.pl
http://code.google.com/p/android-random/downloads/detail?name=axml2xml.pl
http://code.google.com/p/android-random/downloads/detail?name=axml2xml.pl
http://code.google.com/p/android-random/downloads/detail?name=axml2xml.pl
http://code.google.com/p/android-random/downloads/detail?name=axml2xml.pl
http://code.google.com/p/android-random/downloads/detail?name=axml2xml.pl
http://code.google.com/p/android-random/downloads/detail?name=axml2xml.pl

© Copyright 2011 Denim Group - All Rights Reserved

Much Better

• Now we see:

– Screens in application

– Permissions required

by the application

– Intents applications is

registered to consume

– And so on

11

© Copyright 2011 Denim Group - All Rights Reserved

Do the Same Thing With the Rest of Them

• Recurse through the res/ subdirectory

• UI layouts, other resources

12

© Copyright 2011 Denim Group - All Rights Reserved

What About the Code?

• All of it is stuffed in classes.dex

• Android phones use DEX rather than Java bytecodes

– Register-based virtual machine rather than stack-based virtual machine

• Options:

– Look at DEX assembly via de-dexing

– Convert to Java bytecode and then to Java source code

13

© Copyright 2011 Denim Group - All Rights Reserved

De-Dex to See DEX Assembly

• DEX bytecode ~=

Java bytecode

• All code goes in one

file

• Disassemble to DEX

assembly with dedexer

http://dedexer.sourceforge.net/

14

http://dedexer.sourceforge.net/
http://dedexer.sourceforge.net/
http://dedexer.sourceforge.net/

© Copyright 2011 Denim Group - All Rights Reserved

Lots of Information

• Like the fun-fun world

of Java disassembly

and decompilation

– (We‟ll get to the DEX

decompilation in a

moment)

• LOTS of information

available

15

© Copyright 2011 Denim Group - All Rights Reserved

But Can I Decompile to Java?

• Yes

• We

• Can

• Convert to Java bytecodes with dex2jar

– http://code.google.com/p/dex2jar/

– (Now you can run static analysis tools like Findbugs)

• Convert to Java source code with your favorite Java decompiler

– Everyone has a favorite Java decompiler, right?

16

http://code.google.com/p/dex2jar/

© Copyright 2011 Denim Group - All Rights Reserved

DEX Assembly Versus Java Source Code

• De-DEXing works pretty reliably

• DEX assembly is easy to parse with grep

• DEX assembly is reasonably easy to manually analyze

• Java decompilation works most of the time

• Java source code can be tricky to parse with grep

• Java source code is very easy to manually analyze

• Verdict:

– Do both!

– Grep through DEX assembly to identify starting points for analysis

– Analyze Java source in detail

17

© Copyright 2011 Denim Group - All Rights Reserved

So What Did We Learn?

• Look at the string constants

– URLs, hostnames, web paths

• Look at the de-DEXed assembly

– Method calls

– Data flow

• Developers: BAD NEWS

– The bad guys have all your code

– They might understand your app better than you

– How much sensitive intellectual property do you want to embed in your mobile

application now?

18

© Copyright 2011 Denim Group - All Rights Reserved

Is There Sensitive Data On the Device?

• Look at the disassemled DEX code

• Grep for “File”

19

© Copyright 2011 Denim Group - All Rights Reserved

What About Java Source Code?

• Get the source code with JD-Gui

– http://java.decompiler.free.fr/

20

http://java.decompiler.free.fr/

© Copyright 2011 Denim Group - All Rights Reserved

Look for Files With Bad Permissions

• Look for file open operations using

– Context.MODE_WORLD_READABLE

– (translates to “1”)

21

© Copyright 2011 Denim Group - All Rights Reserved

Next: What Is On the Server-Side

• To access sensitive data on a device:

– Steal a device

– Want more data?

– Steal another device

• To access sensitive data from web services

– Attack the web service

• String constants for URLs, hostnames, paths

• Examples:

– 3rd party web services

– Enterprise web services

22

© Copyright 2011 Denim Group - All Rights Reserved

So Now What?

• 3rd Party Web Services

– Is data being treated as untrusted?

– Google promised to “not be evil”

• For everyone else…

• Enterprise Web Services

– Did you know these were deployed?

– Have these been tested for possible security flaws?

– Stealing records en-masse is preferable to stealing them one-at-a-time

23

© Copyright 2011 Denim Group - All Rights Reserved

Web Services Example

• Trumped up example, but based on real life

• Given a web services endpoint, what will a bad guy do?

• Sequence:

– Request a junk method “abcd”

– Get a “No method „abcd‟ available”

– Request a method “<script>alert(„hi‟);</script>”

– Hilarity ensues…

24

© Copyright 2011 Denim Group - All Rights Reserved

What Is Wrong With the Example Application?

• Sensitive data stored on the device unprotected

• Trusts data from 3rd party web services

• Exposes enterprise web services to attackers

• Enterprise web services vulnerable to reflected XSS attacks

• And so on…

• This is a trumped-up example with concentrated vulnerabilities, but…

• All of these reflect real-world examples of vulnerabilities

– Public breaches

– Application assessments

25

© Copyright 2011 Denim Group - All Rights Reserved

What About iPhones/iPads?

• Objective-C compiled to ARMv6, ARMv7 machine code

– Not as fun (easy) as Java compiled to DEX bytecode

– But … subject to buffer overflows, memory handling issues, other native code fun

• Apps from iTunes Store

– Encrypted

– Used to be “easy” (well, mechanical) to break encryption with a jailbroken phone

and a debugger

– Now trickier (but likely not insurmountable)

– And the default apps are not encrypted…

26

© Copyright 2011 Denim Group - All Rights Reserved

Run “strings” on the Binary

• Web services endpoints: URLs, hostnames, paths

• Objective-C calling conventions:

[myThing doStuff:a second:b third:c];

becomes

obj_msgsend(myThing, “doStuff:second:third:”, a, b, c);

27

© Copyright 2011 Denim Group - All Rights Reserved

Run “otool” on the Binary

• otool –l <MyApp>

– View the load commands

– Segment info, encryption info, libraries in use

• otool –t –v <MyApp>

– Disassemble the text segment to ARMv6 assembly

– If run on an encrypted application you get garbage

• And so on…

28

© Copyright 2011 Denim Group - All Rights Reserved

Net Result for iPhone/iPad

• More obscure

– But does that mean more secure?

• Can still retrieve a tremendous amount of information

• Can still observe a running application

• “Security” based on obscurity is not durable

29

© Copyright 2011 Denim Group - All Rights Reserved 30

Mobile Browser Content Handling

• Many mobile platforms allow you to designate applications to handle

content found in web pages

– By URI protocol

– By content type

• Provide a “premium” experience for users who have the target app

installed

• Examples:

– tel:// URLs initiating phone calls

– maps:// URLs to display maps

tel:///

© Copyright 2011 Denim Group - All Rights Reserved

iPhone/iPad URL Schemes

• iOS applications can

be set up to “handle”

certain URL schemes

• Defined in the

application’s Info.plist

• Binary format:

annoying

31

© Copyright 2011 Denim Group - All Rights Reserved

Decoding plist Files

• plutil -convert xml1 Info.plist

• Much nicer

32

© Copyright 2011 Denim Group - All Rights Reserved

iOS URL Handlers

• XPath: Look for:

/plist/dict/array/dict[key='CFBundleURLSchemes']/array/string

• Now you know the URL Schemes the app handles

• SANS blog post on this issue in iOS:

– http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-

apples-

ios/?utm_source%253Drss%2526utm_medium%253Drss%2526utm_campaign%2

53Dinsecure-handling-url-schemes-apples-ios

– Too long to type? http://bit.ly/ezqdK9

33

http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/?utm_source%253Drss%2526utm_medium%253Drss%2526utm_campaign%253Dinsecure-handling-url-schemes-apples-ios
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/?utm_source%253Drss%2526utm_medium%253Drss%2526utm_campaign%253Dinsecure-handling-url-schemes-apples-ios
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/?utm_source%253Drss%2526utm_medium%253Drss%2526utm_campaign%253Dinsecure-handling-url-schemes-apples-ios
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/?utm_source%253Drss%2526utm_medium%253Drss%2526utm_campaign%253Dinsecure-handling-url-schemes-apples-ios
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/?utm_source%253Drss%2526utm_medium%253Drss%2526utm_campaign%253Dinsecure-handling-url-schemes-apples-ios
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/?utm_source%253Drss%2526utm_medium%253Drss%2526utm_campaign%253Dinsecure-handling-url-schemes-apples-ios
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/?utm_source%253Drss%2526utm_medium%253Drss%2526utm_campaign%253Dinsecure-handling-url-schemes-apples-ios
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/?utm_source%253Drss%2526utm_medium%253Drss%2526utm_campaign%253Dinsecure-handling-url-schemes-apples-ios
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/?utm_source%253Drss%2526utm_medium%253Drss%2526utm_campaign%253Dinsecure-handling-url-schemes-apples-ios
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/?utm_source%253Drss%2526utm_medium%253Drss%2526utm_campaign%253Dinsecure-handling-url-schemes-apples-ios
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/?utm_source%253Drss%2526utm_medium%253Drss%2526utm_campaign%253Dinsecure-handling-url-schemes-apples-ios
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/?utm_source%253Drss%2526utm_medium%253Drss%2526utm_campaign%253Dinsecure-handling-url-schemes-apples-ios
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/?utm_source%253Drss%2526utm_medium%253Drss%2526utm_campaign%253Dinsecure-handling-url-schemes-apples-ios
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/?utm_source%253Drss%2526utm_medium%253Drss%2526utm_campaign%253Dinsecure-handling-url-schemes-apples-ios
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/?utm_source%253Drss%2526utm_medium%253Drss%2526utm_campaign%253Dinsecure-handling-url-schemes-apples-ios
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/?utm_source%253Drss%2526utm_medium%253Drss%2526utm_campaign%253Dinsecure-handling-url-schemes-apples-ios
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/?utm_source%253Drss%2526utm_medium%253Drss%2526utm_campaign%253Dinsecure-handling-url-schemes-apples-ios
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/?utm_source%253Drss%2526utm_medium%253Drss%2526utm_campaign%253Dinsecure-handling-url-schemes-apples-ios
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/?utm_source%253Drss%2526utm_medium%253Drss%2526utm_campaign%253Dinsecure-handling-url-schemes-apples-ios
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/?utm_source%253Drss%2526utm_medium%253Drss%2526utm_campaign%253Dinsecure-handling-url-schemes-apples-ios
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/?utm_source%253Drss%2526utm_medium%253Drss%2526utm_campaign%253Dinsecure-handling-url-schemes-apples-ios
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/?utm_source%253Drss%2526utm_medium%253Drss%2526utm_campaign%253Dinsecure-handling-url-schemes-apples-ios
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/?utm_source%253Drss%2526utm_medium%253Drss%2526utm_campaign%253Dinsecure-handling-url-schemes-apples-ios
http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/?utm_source%253Drss%2526utm_medium%253Drss%2526utm_campaign%253Dinsecure-handling-url-schemes-apples-ios
http://bit.ly/ezqdK9

© Copyright 2011 Denim Group - All Rights Reserved

Android Intents

• Intents are facilities for late-binding messaging between applications

– http://developer.android.com/guide/topics/intents/intents-filters.html

• One use is to allow applications to register to receive messages from

the Browser when certain types of content are received

– Like iOS URL Schemes but an even more comprehensive IPC mechanism

34

http://developer.android.com/guide/topics/intents/intents-filters.html
http://developer.android.com/guide/topics/intents/intents-filters.html
http://developer.android.com/guide/topics/intents/intents-filters.html

© Copyright 2011 Denim Group - All Rights Reserved

Intent Filter Example

<intent-filter>

<action android:name="android.intent.action.VIEW" />

<category android:name="android.intent.category.DEFAULT" />

<category android:name="android.intent.category.BROWSABLE" />

<data android:scheme="danco" />

</intent-filter>

• Action: What to do?

• Data: Scheme is URI “protocol” to handle

• Category BROWSABLE: Allow this Action to be

initiated by the browser

35

© Copyright 2011 Denim Group - All Rights Reserved

Intent Filter Demo – Manual Launch, HTML Page

36

© Copyright 2011 Denim Group - All Rights Reserved

Intent Filter Demo – Anchor Launch, IFrame

Launch

37

© Copyright 2011 Denim Group - All Rights Reserved

I’m a Security Tester. Why Do I Care?

• URL handlers are remotely-accessible attack surface

• This is a way for you to “reach out and touch” applications installed on

a device if you can get a user to navigate to a malicious page

• Send in arbitrary URLs via links or (easier) embedded IFRAMEs

• Example: iOS Skype application used to automatically launch the

Skype application and initiate a call when it encountered a skype://

URL

– Apple‟s native Phone handle for tel:// URLs would confirm before a call was made

38

tel:///

© Copyright 2011 Denim Group - All Rights Reserved

I’m a Developer. Why Do I Care?

• See the previous slide. Bad guys care. So should you. Please.

• Content passed in via these handlers must be treated as untrusted

– Positively validate

– Enforce proper logic restrictions

• All:

– Should a malicious web page be able to cause this behavior?

• Make phone call, transmit location, take photo, start audio recording, etc

• iOS:
– Validate inputs to handleOpenURL: message

• Android:
– Validate data brought in from Action.getIntent() method

39

© Copyright 2011 Denim Group - All Rights Reserved

So What Should Developers Do?

• Threat model your smartphone applications

– More complicated architectures -> more opportunities for problems

• Watch what you store on the device

– May have PCI, HIPAA implications

• Be careful consuming 3rd party services

– Who do you love? Who do you trust?

• Be careful deploying enterprise web services

– Very attractive target for bad guys

– Often deployed “under the radar”

40

© Copyright 2011 Denim Group - All Rights Reserved

Secure Mobile Development Reference

• Platform-specific recommendations

• Key topic areas

• Provide specific, proscriptive guidance to developers building mobile

applications

41

© Copyright 2011 Denim Group - All Rights Reserved

Specific Platforms

• iOS (iPhone, iPad)

• Android

• Blackberry (in progress)

• Windows Phone 7 (in progress)

– Windows Mobile 6.5 (?)

• Symbian (?)

• Others (?)

• Will be guided by demand, which is focused by new development

activity

42

© Copyright 2011 Denim Group - All Rights Reserved

Topics Areas

• Topic Areas

– Overview of Application Development

– Overview of Secure Development

– Defeating Platform Environment Restrictions

– Installing Applications

– Application Permissions Model

– Local Storage

– Encryption APIs

– Network Communications

– Protecting Network Communications

– Native Code Execution

– Application Licensing and Payments

– Browser URL Handling

43

© Copyright 2011 Denim Group - All Rights Reserved

So What Should Security People Do?

• Find out about smartphone projects

– Not always done by your usual development teams

– R&D, “Office of the CTO,” Marketing

• Assess the security implications of smartphone applications

– What data is stored on the device?

– What services are you consuming?

– Are new enterprise services being deployed to support the application?

44

© Copyright 2011 Denim Group - All Rights Reserved

Resources

• axml2xml.pl (Convert Android XML files to normal XML)

– http://code.google.com/p/android-random/downloads/detail?name=axml2xml.pl

• Dedexer (Convert DEX bytecodes into DEX assembler)

– http://dedexer.sourceforge.net/

• Dex2jar (Convert DEX bytecode in Java bytecode)

– http://code.google.com/p/dex2jar/

• JD-GUI (Convert Java bytecode to Java source code)

– http://java.decompiler.free.fr/

• otool (Get information about iPhone binaries)
– http://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/man1/otool.1.html

45

http://code.google.com/p/android-random/downloads/detail?name=axml2xml.pl
http://code.google.com/p/android-random/downloads/detail?name=axml2xml.pl
http://code.google.com/p/android-random/downloads/detail?name=axml2xml.pl
http://dedexer.sourceforge.net/
http://code.google.com/p/dex2jar/
http://java.decompiler.free.fr/
http://developer.apple.com/library/mac/

© Copyright 2011 Denim Group - All Rights Reserved

Online

• Code, slides and videos online:

www.smartphonesdumbapps.com

46

http://www.smartphonesdumbapps.com/

© Copyright 2011 Denim Group - All Rights Reserved

Questions?

Dan Cornell

dan@denimgroup.com

Twitter: @danielcornell

www.denimgroup.com

(210) 572-4400

47

mailto:dan@denimgroup.com
http://twitter.com/danielcornell
http://www.denimgroup.com/
http://www.denimgroup.com/

